Lecture 13: Information Theory and Counting: Shearer's Lemma

- Entropy = "Surprise"
- X is a random variable
- $p_{X}(x)$ is the probability of x according to the distribution X
- Surprise of seeing x is, $h_{X}(x):=-\log p_{X}(x)$
- Entropy of X is the expected surprise, $H(X):=\mathbb{E}_{X \sim X}\left[h_{X}(x)\right]$
- Alternately, $H(X)=\sum_{x}-p_{X}(x) \log p_{X}(x)$

Conditional Entropy

- (X, Y) is a joint distribution
- $(X \mid Y=y)$ is the conditional distribution of X conditioned on the fact that $Y=y$
- Entropy of $(X \mid Y=y)$ is defined by $H(X \mid Y=y)$
- Conditional entropy $H(X \mid Y):=\mathbb{E}_{y \sim Y}[H(X \mid Y=y)]$

Entropy

- Chain Rule: $H(X Y)=H(X)+H(X \mid Y)$
- Conditional Chain Rule: $H(X Y \mid Z)=H(X \mid Z)+H(Y \mid X Z)$
- Inequalities:
- $0 \leqslant H(X) \leqslant|r a n g e(X)|$
- $H(X) \geqslant H(X \mid f(Y)) \geqslant H(X \mid Y)$
- Binary Entropy Function:
$h(p):=-p \log p-(1-p) \log (1-p)$

Binomial Coefficient Tail

Theorem

$$
\sum_{i \leqslant \alpha n}\binom{n}{i} \leqslant 2^{h(\alpha) n}
$$

- Let \mathcal{C} be the set of all subsets of $[n]$ of size at most αn
- Let X be a uniform distribution over \mathcal{C}
- Let $\left(X_{1}, \ldots, X_{n}\right)$ be the characteristic vector corresponding to the subset sampled by X
- $\log |\mathcal{C}|=H(X)=H\left(X_{1}, \ldots, X_{n}\right)=\sum_{i \in[n]} H\left(X_{i} \mid X_{<i}\right) \leqslant$ $\sum_{i \in[n]} H\left(X_{i}\right)$
- Since all indices are symmetric, $H\left(X_{i}\right)=H\left(X_{1}\right)$
- Note that $H\left(X_{1}| | X \mid=i\right)=h(i / n) \leqslant h(\alpha)$, for $i \leqslant \alpha n$
- Therefore, $H\left(X_{1}\right) \leqslant h(\alpha)$
- Overall $\log |\mathcal{C}| \leqslant n h(\alpha)$

Identifying Bad Balls

Consider the task of designing a set $\mathcal{D}=\left\{D_{1}, \ldots, D_{\ell}\right\}$ such that $D_{i} \subseteq[n]$, for $i \in[\ell]$ such that:

- Consider n ordered balls
- Let B be the set of positions with bad balls
- Suppose we are given an oracle that on input $D \subseteq[n]$ outputs $|B \cap D|$
- Using each set in \mathcal{D} to query the oracle, output B

Theorem

$$
\ell \geqslant n / \log (n+1)
$$

- Note that $B \mapsto\left(\left|B \cap D_{1}\right|, \ldots,\left|B \cap D_{\ell}\right|\right)$ is a bijection (two different B and B^{\prime} cannot have the same sequence, otherwise we cannot distinguish B from B^{\prime})
- Let X be a uniform random variable over $2^{[n]}$ (i.e., the set of all subsets of $[n]$)
- $n=H(X) \leqslant \sum_{i \in[\ell]} H\left(\left|X \cap D_{i}\right|\right) \leqslant \ell \log (n+1)$

Number of Matchings

Let $G=(A, B, E)$ be a bipartite graph

Theorem (Brégman's Theorem)

Number of perfect matchings in G is at most $\prod_{v \in A}(d(v)!)^{1 / d(v)}$

- Let Σ be the set of all perfect matchings
- Let σ be a uniform random variable over Σ
- $\log |\Sigma|=H(\sigma)=\sum_{v \in A} H\left(\sigma(v) \mid \sigma(u)_{u<v}\right)$
- Trivial upper bound by $H(\sigma(v)) \leqslant \log d(v)$
- Idea: Expand according to a random permutation τ of vertices in A
- Think: How to get $\frac{1}{d(v)}(1+\cdots+d(v))$ as upper bound to get the result
- Consider a set S of n points in 3-dimensions
- Let n_{1} be number of unique points by projecting S on $X=0$ plane, n_{2} be the number of unique points by projecting S on $Y=0$ plane and n_{3} be the number of unique points by projecting S on $Z=0$ plane

Theorem

$$
n \leqslant\left(n_{1} n_{2} n_{3}\right)^{1 / 2}
$$

- Let (X, Y, Z) represent the coordinates of uniformly chosen point in S
- $\log n=H(X, Y, Z)=H(X)+H(Y \mid X)+H(Z \mid X Y)$
- $\log n_{1} \geqslant H(Y, Z)=H(Y)+H(Z \mid Y) \geqslant H(Y \mid X)+H(Z \mid X Y)$
- $\log n_{2} \geqslant H(X, Z)=H(X)+H(Z \mid X) \geqslant H(X)+H(Z \mid X Y)$
- $\log n_{3} \geqslant H(X, Y)=H(X)+H(X \mid Y)$
- $\log n \leqslant \frac{1}{2} \log \left(n_{1} n_{2} n_{3}\right)$

Shearer's Lemma

- Let \mathcal{F} be a set of subsets of $[n]$
- For every $i \in[n]$, there are at least t subsets in \mathcal{F} that contain i

Theorem (Shearer's Lemma)

$$
H\left(X_{1}, \ldots, X_{n}\right) \leqslant \frac{1}{t} \sum_{F \in \mathcal{F}} H\left(X_{F}\right)
$$

- "Sub-additivity of Entropy" is obtained by considering \mathcal{F} as the set of all singleton sets
- "Volume computed by projections" is obtained by considering \mathcal{F} as the set of all subsets of size $(n-1)$

Theorem (Loomis-Whitney Theorem)

Let B be a measurable body in \mathbb{R}^{d} and $|\cdot|$ represent the volume. Let B_{j}, for $j \in[d]$, represent the body when B is projected along the j-th coordinate axis. Then:

- The i-th smallest index in F is represented by F_{i}
- Consider the manipulation similar to the "volume argument"

$$
\begin{aligned}
\sum_{F \in \mathcal{F}} H\left(X_{F}\right) & =\sum_{F \in \mathcal{F}} \sum_{i \leqslant|F|} H\left(X_{F_{i}} \mid X_{\left\{j<F_{i}\right\} \cap F}\right) \\
& \geqslant \sum_{F \in \mathcal{F}} \sum_{i \leqslant|F|} H\left(X_{F_{i}} \mid X_{\left\{j<F_{i}\right\}}\right) \\
& \geqslant t \sum_{i \in[n]} H\left(X_{i} \mid X_{<i}\right)=t H\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

