


Entropy

Entropy = “Surprise”

X is a random variable

px(x) is the probability of x according to the distribution X
Surprise of seeing x is, hx(x) == — logpx(x)

Entropy of X is the expected surprise, H(X) := Exwx[hx(x)]
Alternately, H(X) = >, —px(x) log px(x)
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Conditional Entropy

e (X,Y) is a joint distribution

@ (X|Y =y) is the conditional distribution of X conditioned on
the fact that Y = y

e Entropy of (X|Y = y) is defined by H(X|Y = y)

o Conditional entropy H(X|Y) := E,~y[H(X|Y = y)]
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Entropy

Chain Rule: H(XY) = H(X) 4+ H(X|Y)
Conditional Chain Rule: H(XY|Z) = H(X|Z) + H(Y|XZ)
Inequalities:

e 0 < H(X) < |range(X)|

o H(X) > H(X|f(Y)) = H(X|Y)

Binary Entropy Function:
h(p) == — plogp — (1 — p)log(1— p)
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Binomial Coefficient Tail

Z (n> < 2h(a)n
[}

i<an

@ Let C be the set of all subsets of [n] of size at most an
@ Let X be a uniform distribution over C

@ Let (Xi,...,X,) be the characteristic vector corresponding to
the subset sampled by X

o log C| = H(X) = H(X1,...,Xn) = > ;1 H(XilX<i) <
> ieln H(Xi)

@ Since all indices are symmetric, H(X;) = H(X1)

e Note that H(X1| |X| =1i) = h(i/n) < h(«), for i < an

@ Therefore, H(X1) < h(a)

@ Overall log|C| < nh(«)
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|dentifying Bad Balls

Consider the task of designing a set D = {Ds, ..., Dy} such that
D; C [n], for i € [¢] such that:
o Consider n ordered balls
o Let B be the set of positions with bad balls
@ Suppose we are given an oracle that on input D C [n] outputs
|B N D
@ Using each set in D to query the oracle, output B

0> n/log(n+1)

e Note that B — (|BN Dy|,...,|BN Dy|) is a bijection (two
different B and B’ cannot have the same sequence, otherwise
we cannot distinguish B from B’)

@ Let X be a uniform random variable over 2[] (i.e., the set of
all subsets of [n])

o n=H(X) <X g HIX N Dif) < Llog(n+1)
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Number of Matchings

Let G = (A, B, E) be a bipartite graph

Theorem (Brégman's Theorem)

Number of perfect matchings in G is at most [ ], A(d(v)!)}/ V)

Let X be the set of all perfect matchings

Let o be a uniform random variable over ¥

108 %] = H(0) = ¥yen H(o()lo(1)uc)

Trivial upper bound by H(o(v)) < log d(v)

Idea: Expand according to a random permutation 7 of vertices
in A

Think: How to get ﬁ (1+---+d(v)) as upper bound to
get the result
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Introduction to Shearer's Lemma

Consider a set S of n points in 3-dimensions

Let n; be number of unique points by projecting S on X =0
plane, ny be the number of unique points by projecting S on
Y = 0 plane and n3 be the number of unique points by
projecting S on Z = 0 plane

n < (n1n2n3)1/2

Let (X, Y, Z) represent the coordinates of uniformly chosen
point in S

logn=H(X,Y,Z)=H(X)+ H(Y|X)+ H(Z|XY)

logn > H(Y,Z)=H(Y)+ H(Z|Y) = H(Y|X) + H(Z|XY)
logny > H(X,Z) = H(X) + H(Z|X) > H(X) + H(Z|XY)
log n3 > H(X, Y) = H(X) + H(X|Y)

log n < % log(ninan3)
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Shearer's Lemma

@ Let F be a set of subsets of [n]

@ For every i € [n], there are at least t subsets in F that contain
i

Theorem (Shearer's Lemma)

1
H -
(Xt Xn) < S D HXF)
Fer

@ “Sub-additivity of Entropy” is obtained by considering F as the
set of all singleton sets

@ “Volume computed by projections” is obtained by considering
F as the set of all subsets of size (n — 1)

Theorem (Loomis-Whitney Theorem)

Let B be a measurable body in RY and |-| represent the volume.

Let B;, for j € [d], represent the body when B is projected along
the j-th coordinate axis. Then:
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Proof of Shearer's Lemma

@ The j-th smallest index in F is represented by F;

e Consider the manipulation similar to the “volume argument”

D OHXE) =D D HXeIXg<rinF)

FeF FeF i<|F|
> > HXRIX<ry)
FeF i<|F|
tz ’X<I tH(X17"'7Xn)
i€[n]
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